Morita Equivalence for Blocks of Hecke Algebras of Type B
نویسندگان
چکیده
منابع مشابه
Weight two blocks of Iwahori–Hecke algebras of type B
In the representation theory of Iwahori–Hecke algebras of type A (and in particular for representations of symmetric groups) the notion of the weight of a block, introduced by James, plays a central rôle. Richards determined the decomposition numbers for blocks of weight 2, and here the same task is undertaken for weight two blocks of Iwahori–Hecke algebras of type B, using the author’s own def...
متن کاملA Morita Type Equivalence for Dual Operator Algebras
We generalize the main theorem of Rieffel for Morita equivalence of W -algebras to the case of unital dual operator algebras: two unital dual operator algebras A,B have completely isometric normal representations α, β such that α(A) = [Mβ(B)M] ∗ and β(B) = [Mα(A)M] ∗ for a ternary ring of operators M (i.e. a linear space M such that MMM ⊂ M) if and only if there exists an equivalence functor F ...
متن کاملMorita equivalence for cyclotomic BMW algebras
Article history: Received 7 March 2013 Available online xxxx Communicated by Changchang Xi
متن کاملMorita Equivalence of Brandt Semigroup Algebras
We prove that for every group G and any two sets I, J , the Brandt semigroup algebras l(B(I,G)) and l(B(J,G)) are Morita equivalent with respect to the Morita theory of selfinduced Banach algebras introduced by Grønbæk. As applications, we show that if G is an amenable group, then for a wide class of Banach l(B(I,G))-bimodules E, and every n > 0, the bounded Hochschild cohomology groups H(l(B(I...
متن کاملThe Representation Type of Hecke Algebras of Type B
This paper determines the representation type of the IwahoriHecke algebras of type B when q 6= ±1. In particular, we show that a single parameter non–semisimple Iwahori–Hecke algebra of type B has finite representation type if and only if q is a simple root of the Poincaré polynomial, confirming a conjecture of Uno’s [17].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1999
ISSN: 0021-8693
DOI: 10.1006/jabr.1998.7802